skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reinhard Heckel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The risk of overparameterized models, in particular deep neural networks, is often double- descent shaped as a function of the model size. Recently, it was shown that the risk as a function of the early-stopping time can also be double-descent shaped, and this behavior can be explained as a super-position of bias-variance tradeoffs. In this paper, we show that the risk of explicit L2-regularized models can exhibit double descent behavior as a function of the regularization strength, both in theory and practice. We find that for linear regression, a double descent shaped risk is caused by a superposition of bias-variance tradeoffs corresponding to different parts of the model and can be mitigated by scaling the regularization strength of each part appropriately. Motivated by this result, we study a two-layer neural network and show that double descent can be eliminated by adjusting the regularization strengths for the first and second layer. Lastly, we study a 5-layer CNN and ResNet-18 trained on CIFAR-10 with label noise, and CIFAR-100 without label noise, and demonstrate that all exhibit double descent behavior as a function of the regularization strength. 
    more » « less
  2. Deep learning based image reconstruction methods outperform traditional methods. However, neural networks suffer from a performance drop when applied to images from a different distribution than the training images. For example, a model trained for reconstructing knees in accelerated magnetic resonance imaging (MRI) does not reconstruct brains well, even though the same network trained on brains reconstructs brains perfectly well. Thus there is a distribution shift performance gap for a given neural network, defined as the difference in performance when training on a distribution P and training on another distribution Q, and evaluating both models on Q. In this work, we propose a domain adaptation method for deep learning based compressive sensing that relies on self-supervision during training paired with test-time training at inference. We show that for four natural distribution shifts, this method essentially closes the distribution shift performance gap for state-of-the-art architectures for accelerated MRI. 
    more » « less